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ABSTRACT 

If F is a half-Moufang generalized hexagon, then F is Moufang. We also 

give a very short proof that  a generalized hexagon admitting a split BN- 

pair is a Moufang hexagon. 

1. I n t r o d u c t i o n  

In classifying groups acting on geometries, in particular groups with BN-pairs (see 

Section 3), the Moufang condition is in most cases the crucial property which 

allows one to identify the groups using the classification of the Moufang polygons 

by Tits and Weiss [11]. However, often only part of the Moufang condition can 

be verified and hence it is very useful to know that this part is already sufficient. 

For finite generalized quadrangles it was known that the half-Moufang property 

implies the Moufang property [3]. This result was generalized to arbitrary quad- 

rangles in [7]. For generalized hexagons, [4] shows that a half-Moufang hexagon 

where all given elations are central elations satisfies the Moufang condition. We 

here give a new and direct proof of this result (except for the smallest case G2 (2) 

for which there is already another direct proof due to Van Maldeghem [12] 6.3.2, 

case t = 2) and generalize it to prove the result stated in the abstract. Note that 

this is a real generalization even for the smallest case since we do not assume 

that the given elations are central. 
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As a by-product Theorem 4.2 gives a very short proof of the fact that  if a 

group with a split BN-pair acts on a generalized hexagon, it has to satisfy the 

Moufang property (see [9]). 

The general half-Moufang case is open for generalized n-gons with n = 2m _> 8. 

2. Set-up 

A generalized n-gon F is a bipartite graph with valencies at least 3, diameter 

n and girth 2n. For generalized hexagons we have n = 6. The vertices of this 

graph are called the e l e m e n t s  of F. The set of elements adjacent to some element 

x E F is denoted by Fl(x),  and more generally Fi(x) denotes the set of elements 

of (graph theoretic) distance i from x. 

We say that  two elements have the same type if they belong to the same class 

in the bipartition of F. Similarly, we say that  two paths have the same type if 

they have the same length and start or end with elements of the same type. 

If G _< Aut(F), we denote by G [~]zo the subgroup of G fixing all elements of 

F~(x0) (and then it automatically fixes all sets Fj(x0) pointwise, for 0 _< j _< i). 

Further, for elements xl ,  xk we set G[i] = G[i] N G [~] N.-• N G [~] For 
• • " ' ' X o ~ X l ~ ' " ~ X ~  X O  ~ 1  X k  • 

i = 0, we usually omit the superscript [0]. For every simple path (x0 , . . . ,  xn+l) 

of length n + 1 and every i with 0 < i < n, we have Gzo ..... z~+l N G [1]x.z~+l = 1. 

Let (Xo,.. . ,Xn) be a simple path. An e la t ion  (or (x0 , . . . , xn ) -e la t ion)  g of 
F is a member of G [1] If n is even, an elation g E G In~2] is called cen t ra l  X l ~ . . , ~ X n - -  1 " X 

and x is called the cen t e r  of the elation• The group G [11 of elations acts Xl~...~Xn--1 

freely on Fl(x0) \ {xl} and on Fl(xn) \ {Xn-1}. If this action is transitive, then 

we say that  the path (xl, x 2 , . . . ,  Xn-1) is a M o u f a n g  pa th .  If all simple ( n -  2)- 

paths are Moufang, then we say that  F is a M o u f a n g  polygon•  If n is even, 

and if all simple paths of length n - 2 starting with an element of fixed type 

are Moufang, then we say that  F is h a l f - M o u f a n g  for that  type• If all elations 

of that  type are central elations, then we say that  F is h a l f - M o u f a n g  w i t h  

all cen t ra l  e la t ions .  Notice that  the half-Moufang condition is the same as 

the Moufang condition for generalized n-gons where n is odd. It is well-known 

that  Moufang n-gons exist only for n = 3, 4, 6, 8. Background on the Moufang 

condition for generalized n-gons can be found in [12] and in the full classification 

[11]. 

Notation: Regarding commutators and conjugation, we use the notation gh = 

h- lgh .  We also write g-h = (g-1)h and [g, h] = g - l h - l g h  = h-gh = g-lgh. 

We let automorphisms act on the right, so we use exponential notation. 
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If H is a group acting on a set ~t and A C_ ~, we let HA denote the pointwise 

and H{A } denote the setwise stabilizer of A in H. 

The following well-known observations are at the heart of many arguments. 

2.1 LEMMA: Let H be a group acting on a set ~t. Let A C_ ~. Suppose that 

g E HA and let h E H. Then [g,h] E HA if  and only i fg  E HAh. 

For G <_ Aut(F) we have in particula.r: i f  h E G~ then [g, h] E G~ ] i f  and only 
if  g E G [if 

X • 

Notice also that [g, h] = [g, k] implies that hk -1 centralizes g and hence 

[g, hk  -1] .~- 1. 

3. B N - p a i r s  

Generalized polygons were introduced by Tits [10]. The standard examples arise 

from groups with an irreducible spherical BN-pair of rank 2, hence in particular 

from groups of Lie type. For the purpose of the present paper, the following 

geometric definition of such a BN-pair will do. 

Let F be a generalized n-gon, and let G be a group acting (not necessarily 

effectively) on F such that  each element of G acts as a type preserving graph 

automorphism. If G acts transitively on the set of ordered 2n-cycles of F, then 

we say that  G is a group with an i r r educ ib le  spher ica l  B N - p a i r  of  r a n k  2, 

or briefly, with a BN-pa i r .  We say that  F admits a BN-pair if G = Aut(P) has a 

BN-pair. The subgroups B and N of G forming this BN-pair can be described as 

follows. Let A = (x0 ,x l , . . .  ,X2n-l,x2n : XO) be a 2n-cycle in F. Let B = Gxo,xl 

and N = G{A}. Then T = B N N fixes A pointwise, and clearly T <~ N. By the 

transitivity of G on ordered 2n-cycles, we see that  the W e y l  g r o u p  W = N I T  

is the dihedral group of order 2n. The BN-pair is called spli t  if there is a normal 

nilpotent subgroup U ,3 B with B = U(B M N)  or, equivalently, with U acting 

transitively on the 2n-cycles containing (x0, Xl). Finite split BN-pairs of rank 2 

were classified by Fong and Seitz [2] and the general classification was obtained 

in [8, 9, 6]. Groups with a split BN-pair of rank 2 are those associated with 

the group of k-rational points of an absolutely simple algebraic group of relative 

rank 2. 

From now on, throughout the paper we let F denote a generalized hexagon and 

we fix a path ( xo , . . . ,  x6). Unless explicitly stated otherwise we assume that F is 

half-Moufang for paths of the same type as ( x l , . . . ,  x5). In particular, the group 

U G [1] acts transitively on Fl(Xo) \ {xl}. Let G < Aut(F) denote the 

group generated by all elations of this type. 
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3.1 LEMMA: Let x-1 • FI(X0) \ {Xl}. If]rl(XO)l > 4, then V G [1] r iG,  1 --  ~-- Xl -- ,...~X5 

acts transitively on Fl(xs) \{x4}. IflFl(xo)] = 3, then G [llzo,x~,z~ acts transitively 
on r~(x~) \ V~(x~). 

l I I I Proof'. First assume IPl(Xo)l = 3. Let 3  ̀ = (x2,xu,x4,xh,x6,xT) be a simple 

path with x4 ¢ x~. Complete 3  ̀into a closed 12-cycle 

I I I l 
( X 7 , X  6 , Z h , x 4 , x 3 , x 4 , x h , x 6 , x 7 , x 8 , x 9 , x l 0 , x l I  = Xl7) 

Let po denote the projection of x9 onto x2 (i.e., Po is the unique element in 

Fl(x2) with d(x9,Po) = 4), and let q • Fl(x2) \ {x3,Po}. Then d(xs,x2) = 
d(xlo, x2) = 6. Let 3̀ 1 denote the unique 6-path (Xs, . . . ,  q, x2) and 3'2 the unique 

6-path ( x m , . . . , q ,  x2). Let a t  denote the 3`l-elation with x~ 1 = x9 (and so 

x~ 1 = P0), let c~2 denote the 3`2-elation with x~ 2 = x~ (and hence p~2 = x3). Then 

g ~--- O~10~2 • G [1]q,x2 and xg5 = x~. Let/3 be the (x2 , . . . ,  Xs)-elation with q~ = xl. 

and x~ = x~. Let /31 be some (x_2,X_l,xO,Xl,X2,X3,X4)- Then g~ • G[l~,x,2 ~ 

elation with x g~z = x~ and let/)2 be the (/o, xi,  x2,x3, x~, x~, x~)-elation with 

Xg~_? 1132_ ~-- X--l* Then g~/31/32 • G [1]xo,xl,x2 is as desired. 

Now assume that  ]Fl(xo)l >_ 4. We repeat the first part of the previous 

argument twice. Let Y6 • Fl(Xh) \ {x4,x6}. Let 3' = (x2,x3,x~,x~5,x~6,x~7) be a 

simple path with x4 ~ x~. Complete 3' in two distinct ways into 12-cycles 

(X~ ~ ! ! X 6 , X h , X ~ , X 3 , X 4 , X h , X 6 , . . .  , x l 0  , x l l  ~-- X~) 

and 
' ' ' 

x6, xh, x4, xa, x4, xh, y ~ , . . . ,  ylo, yl l  = x~). 

Let Po and Pl denote the respective projections of x9 and Y9 onto x2, and let 

q E Fl(X2)\{x3, Po, pl }. Then d(xs, x2) = d(ys, x2) = d(XlO, x~) = d(ylo, x2) = 6. 

Let ~/1 ---- (X8 , . . .  ,q,  x2) be a path of length 6 and let oL 1 denote the ?l-elation 

al (and SO X~ 1 ---- Po); let 3̀ 2 = (Xl0, . . . ,  q, X:) be a path of length with x 7 = x9 

6, and as denote the 72-elation with x~ 2 = x~ (and hence p~2 = x3). Let 

3̀ 3 = (Ylo, . . . ,q,  x2) be a path of length 6 and a3 denote the 3`3-elation with 

x7,~3 = Yg, so x~ 3 = pl . Finally, let 3̀ 4 = (Ys,- . . ,  q, x2) be a path of length 6 and 

let a4 denote the 3`4-elation with y~4 = YT, and so p~4 = x3. 

Then g = OZlO~20z30l 4 E G~ 1] and x~ = y6. Let/~ be the (x2, . . .  ,Xs)-elation with 

q~ = Xl. Let a0 be the (So- ' ,q,  x2, . . . ,x6)-elation with X~_l lg~° = x_ 1 . Then 
h = (gao) ~ • G [1]zl A Gx_ 1,...,x~ and x h = x~, showing V = G [1]x~ Cl Gz_I,...,z5 to act 

transitively on Fl(Xs) \ {x4}. | 
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3.2 COROLLARY: II c Ii~l(X0)l > 4, then G has a BN-pair. For ]Fa(xo)l = 3, G 

acts transitively on all paths of length 5 starting with the same type of element. 

Proo~ This follows immediately from the previous lemma. | 

3.3 Definition: We say that  the root action for x0 is i n d e p e n d e n t  of  t h e  r o o t  if 

for each pa th (x0 ,x l  ' ' ' ' ' G [11 , x2, x3, x4, xs, x6) the following holds: let U = 22~,z2,223,z,,225 

and U1 = G [1] , , , , ,  and let f~ = Fi(x0) \ {xl}. Then Ullf~ : U[f~. 
221 ~222 ~223 ~224 ~225 

3.4 COROLLARY: Assume IF1 (xo)l >_ 4. I f  the root action for xo is independent 

of the root, then V = G [~]22o,z~,22: f-) G22 4,22~ acts regularly Oil FI(X5) \ {x4} and on 

rl(X_~) \ {xo}. 

Proo~ We keep the notation of the proof of Lemma 3.1. If the root action 

for Xo is independent of the root, then by construction we have ala21r~(222) = 

a3a4[Fl(222) = idlr~(22~). By choice of ao, we also have cq ...c~4aO]r~(22o~-~ ) = 

idlrl(22~-i ) and hence h = (al " . .a4ao)  ~ E G[1122o,221,22~ N G22~,22 5. The regularity 

follows from the fact that  G[1122o,22~,22~ N G22~,22 5,226 = 1. | 

In the following proposition we do not assume that  F is half-Moufang: 

3.5 PROPOSITION: Let F be a generalized hexagon with G = Aut(F) transitive 

on the set of paths of length 2 of the same type. Assume that fl E G[2]zo,222 \ {1}, 

and that "-~22o f2[1] c3,, G222 is transitive on F2 (x2) \ F1 (xl) .  Then F is half-Moufang and 

all elations are conjugate to/3. If/3 E G N it suIfices that ~[x] is transitive XO ,X 1 ~222 ' 

O n  r l ( X 2 )  \ { X l } .  

Proof: Let ( x - 2 , x - l , x o )  be an extension of (xo , . . . ,x6) .  We will show that  

G [2]~o,z-2 is transitive on Fl(x2) \ {xl}. Let p E FI(x2) \ {xl,x3} and let a E 

G[I~ be such t h a t p  = x~. Then [a,/3] E G [2]x271G [1]~4. Let y = x_ 2 , and let 

g E G~ 1] be such that  x29 =- x-2. (It suffices to choose g C G [1] with x~ --= x-1 

if /3 E G [2]zo,xl,z2.) Put  7 = /3g, so 7 E G [2]zo,~_2, and [/3,9] = /3-1,./ E G[y 1]. 
= ~[2] Now, We claim that  [a,/3]fl~ E G [e] ;3 G [1] 1. Clearly, [a, fl]/3~ E ,~222 222 22--2 

f17 -1 E G[i]. Hence by c o n s t r u c t i o n  (/3")/-1) fl~ E G[i]22-2. Since 3' E G [i]z_2, we have 
= n[ 1] ( f lv- i )Z"7 [a, f l]f l~ E ,~22_~, as claimed. 

Thus, [a,/3] = / 3 - ~  is a non-trivial elation in G [2] Since [a,/3] E G [~1 we 222 ~22~ ~t " X4 , 

must have x~ z = p~ = x3. Since p e Fl(x2) was arbitrary, we have proved the 

claim. | 

Suppose again that  F is half-Moufang for ( x l , . . . ,  x5). 
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_ G [ e ]  r r  = ~ [ e ]  3.6 LEMMA: t rUo  = aI22,5 ,U  - we have [Uo,UI] = 1 and 

[Uo,  U2] - -  U I .  

Proof: Note that  we do not assume that G [2152,x4 is transitive on Fl(xo) \ {xl}! 

By Lemma 2.1 we have [U0, U1] _< G [215o,5~,5~ = 1. Similarly, [Uo, U2] _< U1. To see 

that equality holds, let a • U0, and let (xo , . . . ,  x6, xT, . . . ,  x12 = xo) be a closed 
cycle. Let 7 • G[1] with ~ ~ 55,x6,x~,hs,59 x 5 = x3, and hence x 6 = x2. Then for 
any/3 • U2 we have/3av • U1. Furthermore, [/3-a,~/] =/3~/3-~-y • G [llx~. Since 

U ~ G [11 1. So [/3, a] = / 3 ~  /3 • G [1156, we thus have/3-1/3~/3-a~ = [/3, a ] / 3 - ~  • 1, , 56 = 

for any/3 • U2. Thus if 5 • U1, then 5 (~v)-~ • [72 and [5(~v)-~,a] = 6. Hence, 

[Go, = . 

3.7 LEMMA: I fU  G [2] then U is abelian. Z2~54, 

Proof: Let a E G [~]~,~, and let y E F2(x2) \ (Fl(xl)  U Fl(x3)). Let 5 be an 

elation for some path ( . . .  ,y,p, x2) with x35 = xl.  Then a 5 E ,,54~,x2 and hence 

[a ~, ~] = 1 for all ~ e U by Lemma 3.6. Since 5 • G[y 1] , we have In, ~] • G[y 1] and 

hence [a,/3] = 1 for all/3 • U. Thus, U is abelian. | 

3 . 8  COROLLARY:  /1 c U : G [1] : G [2] then the root action for Xo is X 1 ~--- ~55 3;2 ~X3 ~X4 

independent of the root. 

Proof: Let (xo,xl ,x~,x3,x 4 , '  ' xth, x'~6j be a path, and U1 = G [2]x~,3;~,x~. Then 

[U, U1] = G[:~,xl,3;, by Lemma 3.6, showing that U and U1 centralize each other 

on the set f~ = Fl(x0) \ {xl}. Since both groups are abelian by Lemma 3.7 and 

regular on ft, the claim now follows from the fact that the actions of two regular 

abelian groups centralizing each other coincide ([1] Thm. 4.2.A). | 

4. H a l f - M o u f a n g  h e x a g o n s  

4.1 THEOREM (cf. [4]): If  F is a half-Moufang generalized hexagon with all 

central elations, then F is Moufang. 

Proof: Suppose U = G [3]x3 is transitive on Fl(xo). Quoting [4] Sect. 11 or [12] 

6.3.2 (case t = 2) for the case [Fl(xo)l = 3, we may assume that IFl(xo)l >__ 4. 

By Corollary 3.8 and Corollary 3.4 the group V = G [11~2,x3,3;4 N Gz_I acts regu- 

larly on Fi(Xh). We claim that V <_ G [l]~o,x2,3;3,x4. Suppose not and let g E V\Gq 
for some q E Fi(xo). Let a be an elation with center X-l ,  and let/3 E U be such 
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= G [~] CI G [11 that x~_~ = q. Then [a, ~] • G [3]~ and hence [g, [a,/3]] [g, a-~a  ~] • z~ ~4 = 

1 by Lemma 2.1. Since [g,a] = 1, we thus also have [g,a ~] = 1. But this is 

impossible by Lemma 2.1 unless g fixes q. 

It is left to show that V _< G[~I). To see this let v • V and a • G [3]~_~ \{1}.  Then 

= ~[3] with x~ = x~ Iv, a] 1 by Lemma 2.1, showing that v • G[! ] Now let/~ • .~z~ 
~ 3 "  

Then again [v,/~] = 1 by Lemma 2.1, and so v • G [1] Thus V < G [1] X l  " - -  X O ~ X l , X 2 ~ 3 ~ 4  

consists of elations. | 

In the following theorem, we do not assume that F is half-Moufang. 

4.2 THEOREM ([9]): Let G be a group with a split BN-pair of rank 2 acting on 

a generalized hexagon F. Then F is Moufang and G contains its little projective 

group. 

Proof'. By [5] Prop. 3.5, G [~]So is transitive on F2(x2) \ Fl(Xl) for all Xo • F. By 

[9] Prop. 4.1, either Z(U) consists of central elations, or both G [2] and G [:] X o ~ X 2  X l  ~Z3 

are nontrivial. In the first case we are done by Proposition 3.5 and Theorem 4.1, 

in the second case we just use Proposition 3.5 to obtain all elations of both 

types. | 

From now  

Moufang and 

4.3 LEMMA: 

on, until the end of the paper, we assume again that F is half- 

that U = G [1]~,...,~ acts transitively on Fl(XO) \ {x~}. 

If  G ~  ~ U ¢ 1, then U G [21 
X 2 ~ X 4  " 

Proof: First we show that if ~[21 N U ~ 1, then also G [2] N U ~ 1. So let a E ~"~ X4 ;r2~X4 

G [2]x4 N U \ {1}, and let ~ C G [21x6 \ Gx3 by Corollary 3.2. Then [a, ~] E G [21x4'x6 \ {1}. 

So let a E G[~l~2,x4, let (Xo, . . . . .  • ,x6,xT, ,x12 = Xo) be a closed cycle and let 
/~ E G [1] Then [a,/~] E G [ 2 ] n G  [1] Let ~ E G [11 with ~ 5  , X 6  , X 7 , 2 g 8  , X 9  • X 4  X 6  " X 11 , ~ 0  ~X 1 ~X2 , X 3  

x2 = x6. Then a ~'~ • G [2]~4,~ and [a, ¢~]a - ~  • G [1]x2. By Lemma 3.6, there is 

some 5 • G [2]x~,~ such that [a, 5] = a ~'~. Hence h = [a, 5] -~ [a, ¢~] = a-Q~ ~ • 
G[1] I-/~-[21 

X 2 ~ X 6  ~ ' J ~ 4  " 

We claim that [h, 5] = 1. Clearly, [h, (if • G [2]z4,x 6 • Thus, by Lemma 3.6 
there is some 7' • G [21~,~ such that ['/', 5] = [h, 5]. Thus, [5, ~f'h -1] = 1, which 

is impossible unless "~ = 1. Hence [h, 5] = 1. By Lemma 2.1 we thus have 
h • .%~./'211] Conjugation by (~-1 yields h 6-~ = a-l(~/3-1a/~(~-i --= [a,/3(~ -1] • /"2-[11'jx2" 

~[]] 
Since a • ,~2 we therefore must have a • ~[1] But this is possible only if lift--1 " 

x 2 

x~ ~-~ = x3. Thus,/~ = 5 • G[2]~6,~ and the lemma is proved. | 
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4.4 LEMMA: If  U G [2] then the root action for xo is independent of the 

root. 

Proof  If ]U I = 2, there is nothing to show. So we may assume that IFl(X0)l > 4. 

Let x~ • F l ( x 3 ) \ { x 2 , x 4 } .  Let U1 = G Is] , and let f~ = F l ( X o ) \ { x l } .  By 
2:2 '2 :4  ' 

Lemma 3.7 both groups are abelian and regular on ~. 

We claim that Ulla = UI~. By [1] 4.2A, it suffices to show that U1 and U 

centralize each other, in particular then they centralize each other in their action 

on ~. To see this let a • U1,13 • U. Then by Lemma 3.6 there are "7 • G [2] 2:0 ~2:2 

and ~ • G[212:4,x~ such that /~ = [%~]. Then [a,/~] = In, [7,~]] = [a, 'y-17 ~] = 1 by 

Lemma 3.6. Hence U1 ]e = U]~. 

Now let (xl,x'2',x~3',x~) be a simple path with x~ • FI(Xl) \ {Xo,Xs}, and 

let U2 = ~[2] Let x-2 • F2(Xo) \ Fl(Xl). Now let 7 • U2,/~ • U and let 

h • G [2] with -yh 2:-2,2:o x 3 = x3. Then j3 ~h is an (x l ,xs ,x3 ,x~  h,x~h)-elation. So 

/~-~h • uxh and by the previous step u~hlf'l = U[~. Since /~9'h[fl = /~'y[fl and the 

situation is symmetric in U and U2 we see that  U2 and U normalize each other 

on ~ .  

Thus, [U, Us]In <_ UI~ N U21~. If Ui~ N U2[~ = 1, then U and Us centralize 
each other as subgroups of f~ and, since they are abelian and regular, they must 

coincide by [1] Thm. 4.2A. Thus we must have U[a N U2[~ ~t 1. 
I I  I t  I I  I I  I I  I I  Let ( x4 , x3 , x s , x l , x2 , x3 , x~ , xh , x6 , x7  = y3,Ys,Yl,X4) be a 12-cycle, and let 

(y3,Y4,YD,Y6,Y7,Xo) be the path from Y3 to Xo. We can now use H. Van 
Maldeghem's argument (see [7] Prop. 4.6): Let a • U \ {1},a~ • Us \ {1} 

~[~1 Let U_ = G [~] Then U~la = U_ ~l[a. There are with aa~ ~ ~ v2:o. Y3,Y4,Yh,Y~,YT" 
~3• U2, /~  • U_ ~ wi thy7 ~ = y ~ '  = x ~  and h e n c e U  ~_ = U a n d U  z'_ = U s .  But 

f l f l~  • G[~12:0, and so UI~ = Us]~. | 

4.5 LEMMA: I f V  G Is] then U = G [21 2 :2~X4 ~ 2:2~2:3~2:4 " 

Proof  Let U1 = G [212:o,x2 and y E Fl(X3) \ {x2, x4 }. By Lemma 4.4 and Corollary 

3.4 there is some g e G[y ~l with x~ -- x4 if 1Fl(xo)l >__ 4. If IFl(x0)l = 3, such an 

p[2] = U~, so U2Jrl(y) = UlJrl(y). element g exists by Lemma 3.1. Let U2 = "~2:4,x~ 

By Lemma 3.6 we have [U1, U2] = U. Since U and hence U1 and U2 are abelian, 

it follows that U]rl(y) = 1. Since y E Fl(x3) was arbitrary, the claim follows. 
| 

4 .6  LEMMA: [U, U] < G [2] 
__ X2~X4 • 
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Prook Let x-1 • Fl(x0) \ {xl} and let /~ • G[ll*-~,~o,~*,~=,~a- Then for a ,5  • 

U, we have [a,5 ~] • U M U  ~. But [a,5] @ U is also an elation, and since 

• G [~] we must have [a,5] = [a, aZ]. Thus, [U,U] = [U,U z] < U M U  ~ for S 0  

any ~ • G [~] As G [1] is transitive on F1 (x4) \ {xa}, we have 270 ~27 1 ~272 ~2:3 ° 27 -- t ~ 0  ~27 1 ~592 ~273 

~[2] I [U, U] _< ~4~[2]. Similarly, [U, U] _< -~x:. 

4.7 THEOREM: f f  F is a half-Moufang generalized hexagon, then F is Moufang 

and the group generated by all elations of one type also contains all the elations 

of the other type, except in the case of G2 (2) and the group generated by central 

elations. 

Proof: As always we suppose that  the group U = G[11271,...,x~ acts transitively on 

rl(xo) \ {Xl}. 
By Lemma 4.3, either U N G [2] = 1 or U = ~2,~[2]. Note that  in either case, 2:2~X4 

U is abelian by Lemma 3.7 and Lemma 4.6, respectively. 

We now consider the two cases separately: 

U = G [2] • By Lemma 4.5, U = G [2] Let a • U, and suppose a ~ ,-273. X2 ~X4 " X2 ~C3 ~274 " 

Either by Lemma 4.4 and Lemma 3.4 or, in case IFl(Xo)I -- 3, by Lemma 3.1, 
-- rz-[2] n~[~] As in the first there is some g • G [1] such that  1 ¢ h [g, a] • ~x2,x3, ,~xo X 0 ~X 1 ~272 

part of the proof of Lemma 4.3, we now see that  there is some h ~ • G [2]~,x3 \ { 1 }. 

Now we are done by Lemma 3.1 and Proposition 3.5 applied to h ~. 

G [2] M U = 1: Let a • U, and choose a 12-cycle X2,X4  

X 0 ,  X l  . .  , X 6 , X 7 , .  • . , X l l ,  X 0 ) .  

Let ~ E G [11 such that  h = [a,8] # 1. We claim that  h C G [21 Let X3 ~X4 ~X5 ~X6 ~X7 X4 " 

Yl E F1 (x4) \ {xz, Xh}, and let (x4, Yl, Y2, Y3, Y4, Yh, Xlo) be a path of length 6. Let 
rz-[1] with x~ = Xl. Then fly E U, and since U is abelian, we have V E " ~ y l , y 2 , y 3 , y 4 , y 5  

~[1] [(~, fly] = 1. Since v E -~yl we thus also have [c~, fl] • G[yl!. But yl was arbitrary, 

and so we have h • ,-z4 as claimed. We next claim that  h • G[2]z3. This is clear 
if IFl(x0)l = 3 since h = [a, fl]. So assume IFl(xo)l > 3. Let z • Fl(x3) and 

~[1] = 1 by let w • G [1]z7 with x~ = z by Lemma 3.1. Then [h,w] • G [2]z4 M ,-x~,~7 

assumption. By Lemma 2.1, h • G [1] and hence h • G [21 Similarly, h • G [2] X3 " 275 " 

Again we are done by Lemma 3.1 and Proposition 3.5 applied to h. 
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